DESIGN AND TESTING OF FAR- INFRARED PADDY DRYER

Bobby Y. Lived, Manuel Jose C. Regalado, and Alexis T. Belonio

RATIONALE

• Drying paddy during harvest season is one of the major problems in the Philippines.

• Rice harvested during wet season exhibit very high moisture content.

 Undried paddy will easily deteriorate and spoil thus reducing its quality

 A far-infrared dryer which simulate sundrying was designed and tested at REMD as alternative means of low-cost drying paddy especially during rainy period.

OBJECTIVES

General Objective: To design and test a far-infrared paddy dryer.

Specific Objectives:

1. To design the dryer using locally available material as source of far-infrared heat; and

2. To determine the moisture content profile of paddy in the dryer at different temperature and initial moisture content.

METHODOLOGY

- Laboratory experiment
- Design Conceptualization
- Calculations and Drawing Preparation
- Fabrication
- Testing
 - Power requirement (Oscillating Tray, Suction Blower)
 - Emitter Temperature (Burner, emitter, & Chimney)
 - Moisture content (Low and Intermediate)

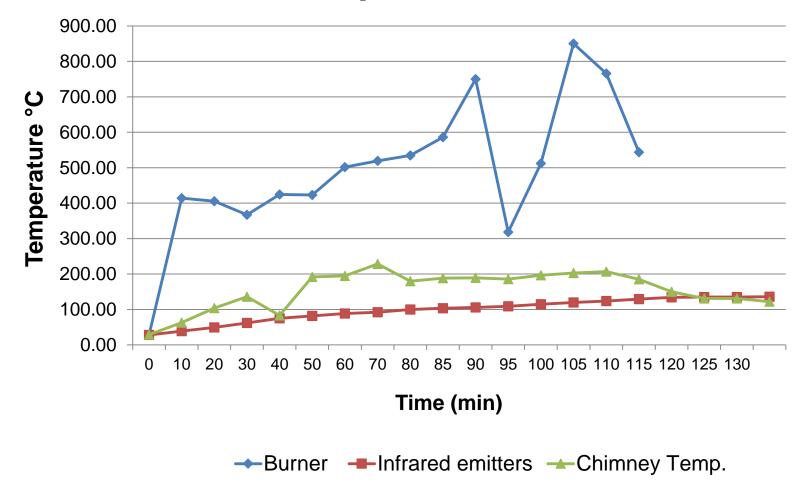
The Far-Infrared Dryer

CLEAN GREEN PRACTICAL SMART PHILRIC

RESULTS AND DISCUSSION

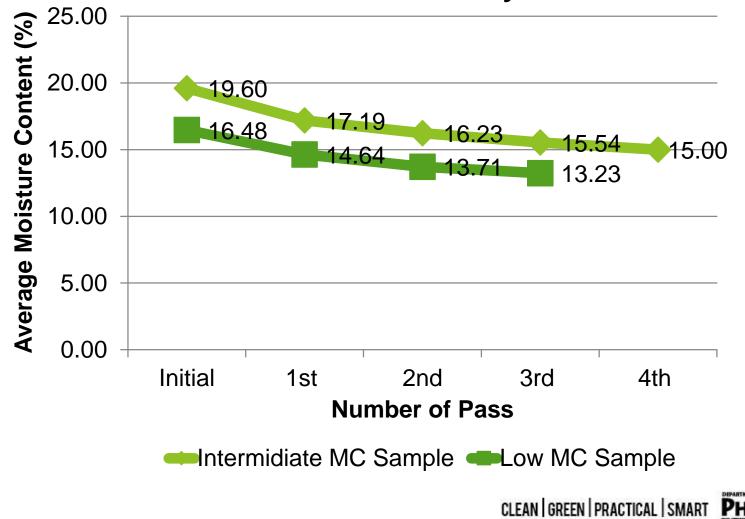
Laboratory Experiment Result

Current (A)	Final Surface Temperature (°C)		
	1C : 1L	2C : 1L	1C : 2L
0.2	49.4	58.8	67.4
0.3	61.4	72.6	77.2
0.4	90.4	85.8	90.8
0.5	113.6	109.4	108.0



Design Specifications of the Far-Infrared Dryer

Dimensions		
Length of emitter	10 m	
Width Emitter	0.8 m	
Thickness of the emitter	10 cm	
Power Requirement		
Oscillating Tray	1.13 kw	
Blower	1.2 kw	
Total	2.33 kw	
Specific Power Consumption	3.58 kw-hr/ton	
Throughput Capacity	0.55 - 0.65 ton/hr	
Heat Source (Rice Husk Gasifier)		
Diameter of Reactor	0.80 m	



Temperature Profile

Moisture Profile of Paddy after passing the Far-Infrared Dryer

Relative Humidity Readings

Samples	Ambient RH (%)	Cooler RH (%)
Intermediate MC		
1	55.00	60.50
2	52.00	54.60
3	52.50	55.70
Low MC		
1	43.70	47.43
2	45.77	49.16
3	43.53	47.10

CONCLUSIONS AND RECOMMENDATIONS

- The far infrared paddy dryer can successfully reduce the moisture content of paddy in 3 to 4 passes from the initial moisture tested until it reaches 13 to 15%.
- The temperature of the emitter affects the moisture removal of paddy in the dryer. The higher the temperature of the emitter the lesser the required number of passes.
- The dryer has a relatively low specific power of 3.58 kW-hr/ton.
- Actual evaluation need to be done to further assess the performance of the dryer as well as the milling quality of the product during harvest season.

End of Presentation

THANK YOU FOR LISTENING!!!

Paperless field data collection for quick data turnover on a nationwide scale

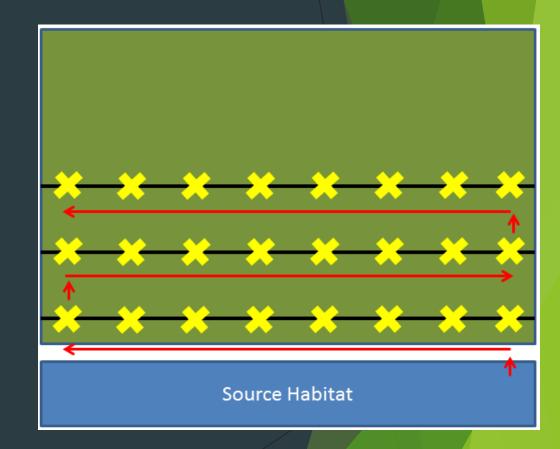
Ulysses Duque Crop Protection Division Philippine Rice Research Institute

Introduction

- The Philippine Rice Information System (PRiSM) aims to develop a monitoring and information system for rice production in the country
 - One of its objectives is to provide timely and accurate information on the rice crop to support policy making, decision making and activity planning related to food security.
 - Such information are being collected through surveys at farmer's fields, characterizing the production situations in the area and to assess the injuries caused by diseases, animal pests and weeds.

- For Crop Health component, we are using the following forms;
 - 1. Fertilizers and Pesticides information are collected throughout the season. Data collectors asked the farmers on the farm management strategies they did on their farms within the season.

2. Crop and Injuries - this for is used at booting and dough stages. At booting injuries on the leaves and tiller are collected. At dough stage, similar injuries are assessed with the addition of injuries on panicles These are all assessed at 10 hills in each monitoring field. Systemic injuries are also assessed at five 1x1m quadrant. Aside from these, weed occurrence above and below canopy, most dominant weed type and species are assessed in three 1x1m quadrant.



bird, rice bug, rice grain bug, stem borer and black bug (dead heart), dirty panicle, false smut and neck blast diseases

leaf folder, leaf miner, thrips, whorl maggots, other defoliatios, bacterial leaf blight, bacterial leaf streak, brown spot, leaf blast, narrow brown spot, and red stripe

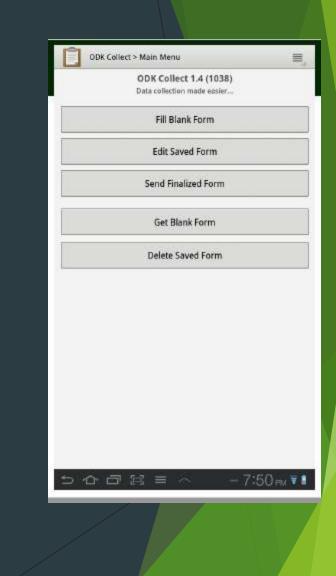
dead heart caused by stem borer and black bug, bakanae, sheath blight, sheath rot, stem rot Rat Injuries - it is assessed at maturity of the crop to be able to relate the damage with the yield loss.

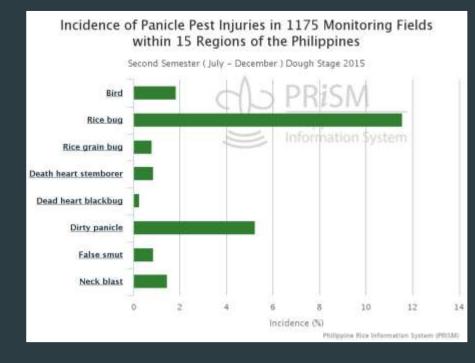
Crop Cut - yield of each monitoring field is also assessed on 3 2x2.5m (5sqm) quadrant. Samples are manually threshed, weigh, and determine the moisture content

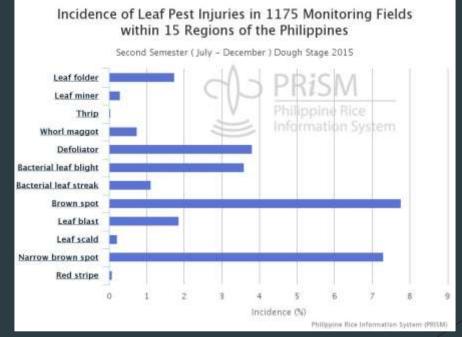
How do we do it?

- 1. PRiSM developed a standard assessment protocol for each injury
- 2. We conducted series of training national level and then on regional level at least twice a year
- 3. Regular monitoring of the project field activities by the facilitators and experts

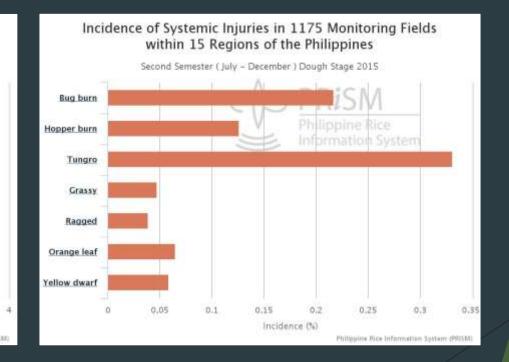
How PRiSM Collects information?

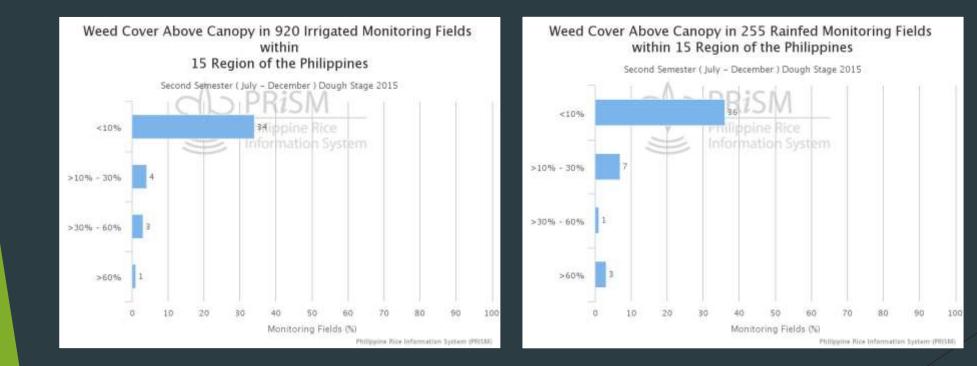

Instead of pen and paper, PRiSM uses an Android-based smart phone installed with Open Data Kit Collect (ODK-collect) that is specifically programed for PRiSM.

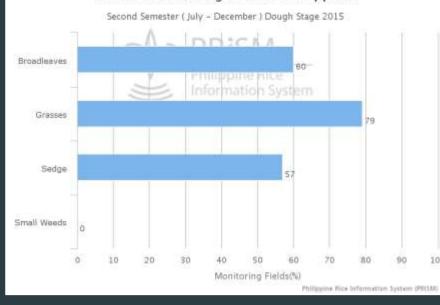

What is ODK Collect?

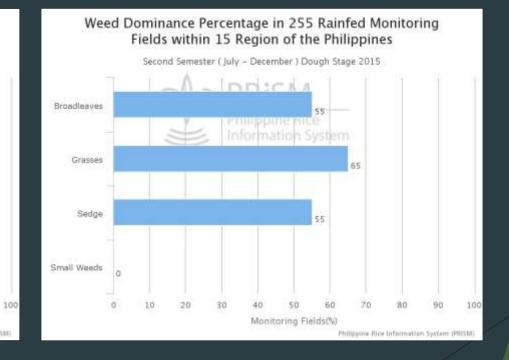

Open Data Kit (https://opendatakit.org/) is a free and opensource set of tools which help organizations author, field, and manage mobile data collection solutions. ODK provides an out-ofthe-box solution for users to:

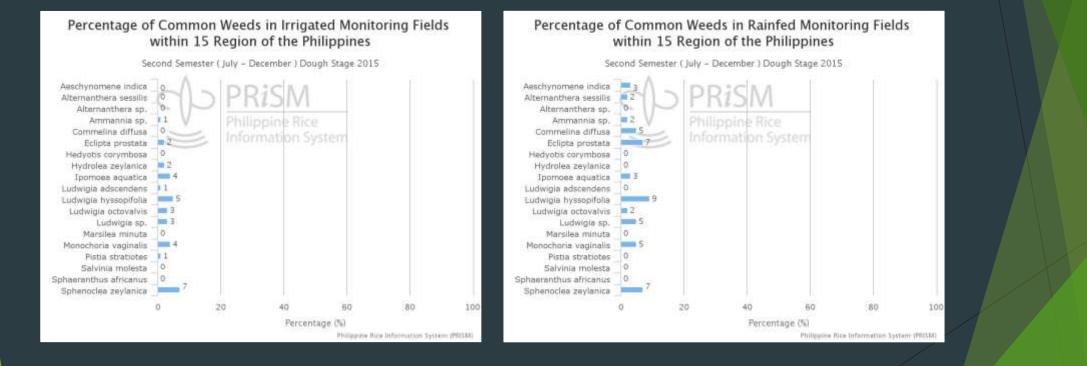
- Build a data collection form or survey (XLSForm is recommended for larger forms);
- **Collect** the data on a mobile device and send it to a server; and
- Aggregate the collected data on a server and extract it in useful formats.

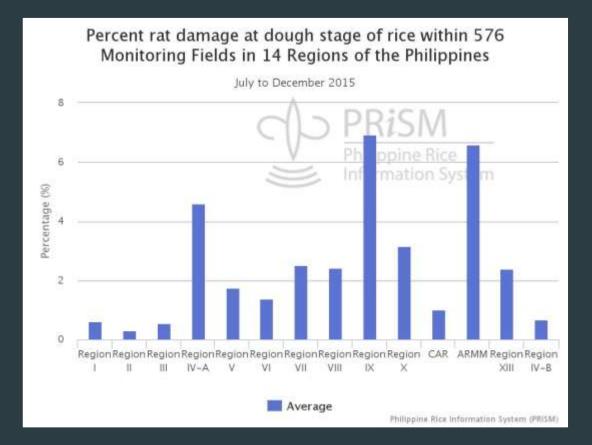

Our Outputs

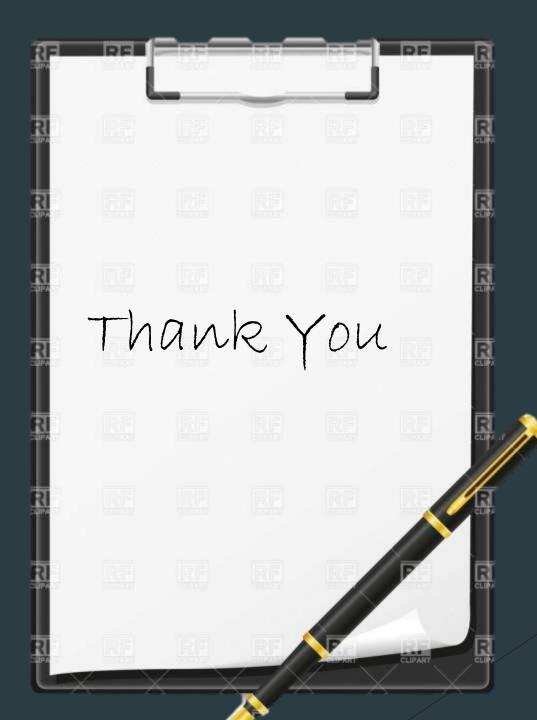



Incidence of Tiller Pest Injuries in 1175 Monitoring Fields within 15 Regions of the Philippines


Second Semester (July - December) Dough Stage 2015 1 A I medical White head stemborer Philippine Rice White head blackbug Bakanae Sheath blight Sheath rot Stem rot 0,5 0 1.5 2 2.5 3.5 1 Incidence (%) Philippine Rice Information System (PRISM)






With these....

- > Timely information especially of rice pests are available on nationwide scale
- That this method of data collection can ease data management

The authors....

PRiSM

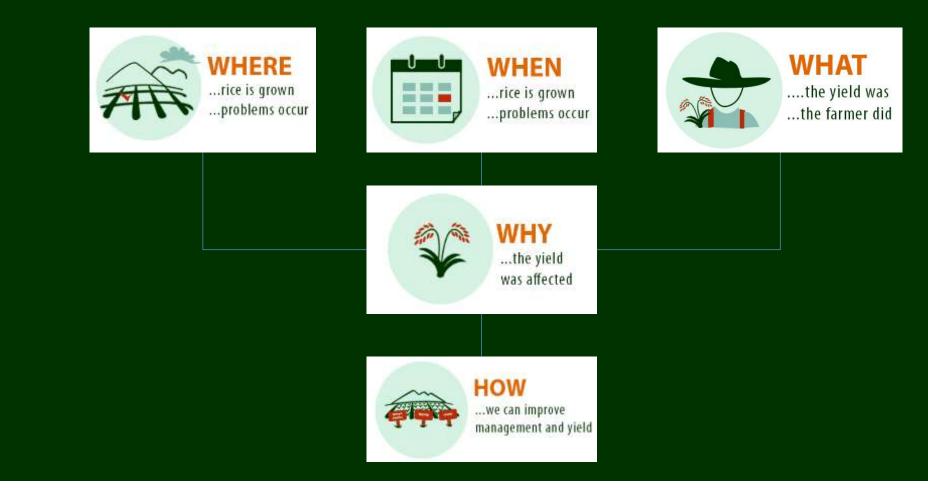
Rodent Damage in the Philippines: PRiSM National Survey Results

Leonardo V. Marquez, Ulysses G. Duque, and Edwin C. Martin (PhilRice CES)

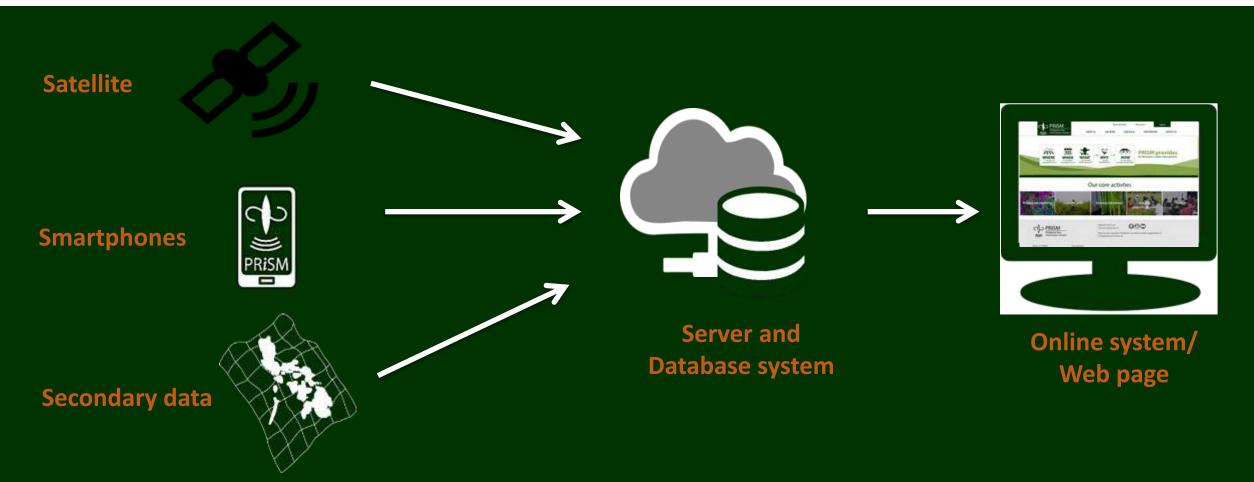
- Rodents are a chronic rice pest inflicting an average of 5-60% crop damage (Joshi et al., 2000)
- Crop loss due to rodents often exceeds to the combined losses of all other pests (Quick, 1990)
- An effective quantitative method to determine crop losses due to rodent is essential in formulating working rodent management system

Introduction

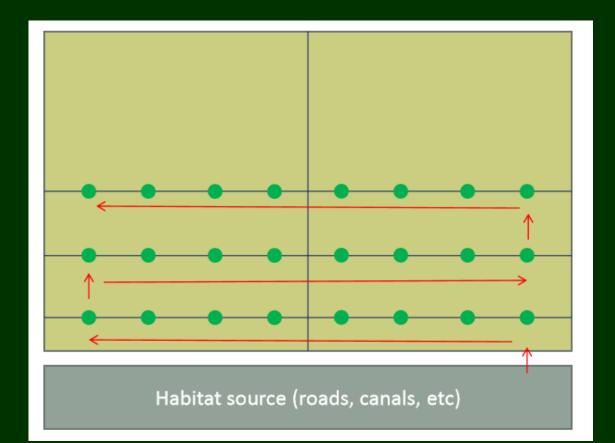
- A national damage survey for losses of growing rice to rodents in the Philippines was conducted by the Rodent Research Center in 1968 to 1971 in 16 major rice producing provinces
- After more than four decades, national survey of major rice pest injuries were regularly monitored by the Philippine Rice Information System (PRiSM) team



The Philippine Rice Information system or PRiSM

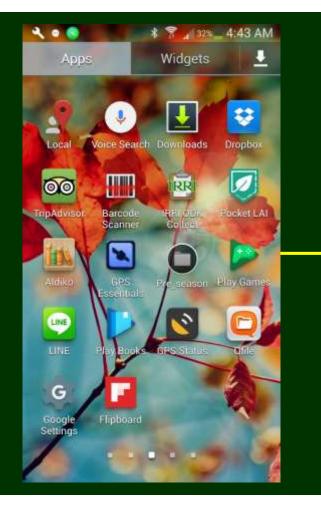

Provides information to address questions on

The Philippine Rice Information system or PRiSM



Monitoring and Stratum for rodent damage of PR*i*SM

1 sampling point = 20 or more tillers


- Data recording and sending was done using smartphone with open data kit (ODK) app
- Open Data Kit (ODK) is a free and opensource set of tools which help organizations author, field, and manage mobile data collection
- ODK's core developers are researchers at the University of Washington

> Methodology

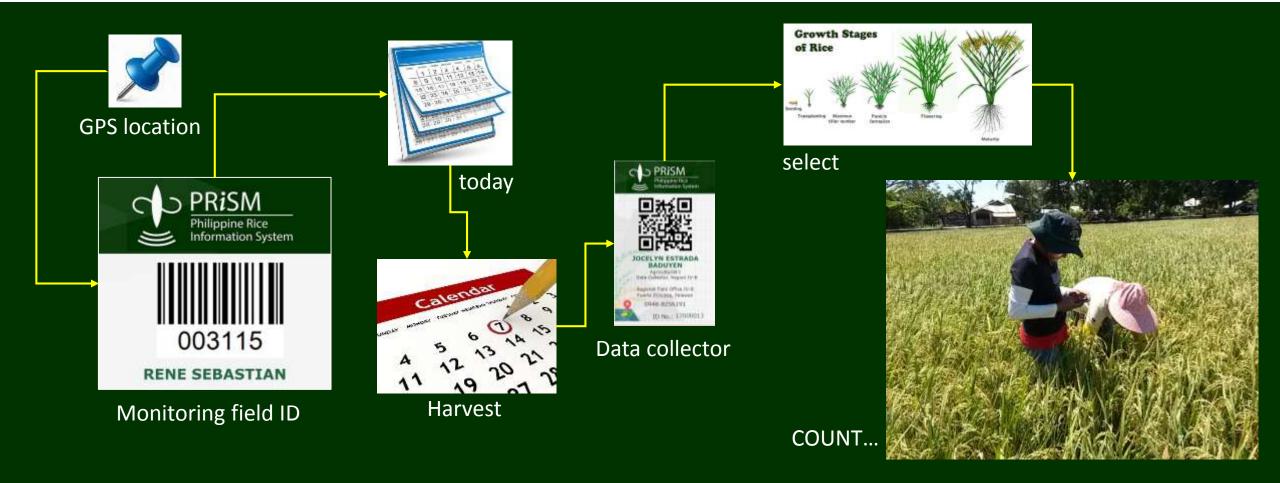
RR

🖬 🗢 🌖 🔹 🛊 🛜 📶 32% 🛄 4:44 AM	م 🖬 ہ 🌖
IRRI ODK Collect > Main Menu	📴 IRRI OD
RRI ODK Collect 1.4.3.1	Finished sca
(10391) Data collection made easier	B2016_0 Version: 201 Added on We
Fill Blank Form	B2016_0 uries
Edit Saved Form (5)	Version: 201 Added on We
Send Finalized Form (6)	B2016_F Version: 201 Added on We
Get Blank Form	B2016_F Version: 201 Added on We
Delete Saved Form	B2016_F Version: 201 Added on We

* 🛜 📶 32% 🛄 4:44 AM OK Collect > Fill Blank Form anning. All forms loaded. Crop_Cut 1601 ed, May 25, 2016 at 12:21 Crop_and_Pest_Inj 1601 ed, May 25, 2016 at 12:21 Fertilizer 1601 ed, May 25, 2016 at 12:21 Pest_Management 1602 ed, May 25, 2016 at 12:21 Rat_Injuries 1601 ed, May 25, 2016 at 12:21

You are at the start of B2016_Rat_Injuries. Swipe the screen as shown below to go backward and

* 😤 📲 31% 🔤 4:45 AM


backward to previous prompt

م 🖬 ہ 🌚

forward to next prompt

> Methodology

- Add general remarks (optional) or description of scene surrounding of the monitoring field
- Take interesting photo of the monitoring field (optional)

> Methodology

 ★
 第
 ↓
 22%
 5:54 AM

 IRRI ODK Collect > B2...
 III
 100%
 100%
 100%

You are at the end of B2016_Rat_Injuries.

RATINJURY_

Mark form as finalized

Save Form and Exit

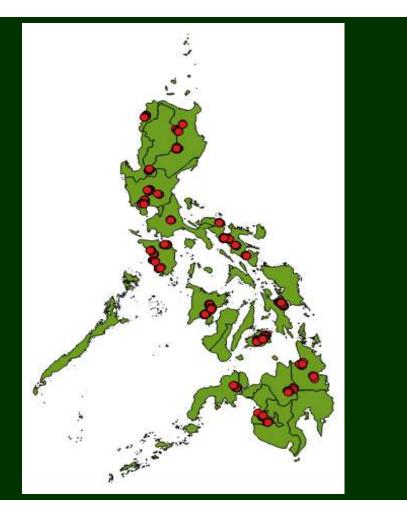
۹ 🖬 🛛 🎯	🗚 🕱 📶 22% 🔤 5:55 AM
IRRI ODK Colle	ct > Send Finalized F
Sending failed on T 11:57	hu, Aug 18, 2016 at
MTR1_999999 Sending failed on T 11:49	99_999999 hu, Aug 18, 2016 at 🗆
MTR3_99999 Sending failed on T 11:47	99_999999 hu, Aug 18, 2016 at 🗆
ng Data Coll 19801112	9999999_Traini ector Mu, Aug 18, 2016 at
RNR_16_1_9 Sending failed on TI 11:55	
Toggle All	Send Selected

Data were received by the aggregator

10	ALA	Calter		R. 6. 1	- 10	en i l	Weine .	1	hit.		100	1392	199	***	Zhalin Y M	
	His Copy -	11.2.	104.0	A- =		e e 1	-	enter + D	Carle .		Conditional			roart Datale Formal	Chart Sat R Field	
											Centraling 1	Teite -	Select.		Chain Shint .	
	Caburt	*	Fare .			-states			hundre.			Hight.		OB.	- Eaking	
IJ.	+	A	43028													
		18		¢:	D	- 6			14		- 4		k.		E 191	
1.8	dentes konDeter .	start	and .		deviced.	(colision)	gridgene o	gps1-latt	gpel-lang	gas1-Altr	pui-Ami	QI1M	baropda.	numbe battpde_mu	mbe beronde_number-dateCoR	ici gra
KE.	8/26/203618.52	1/26/2010	9.34	10/2010 111	1.586+14			11,00164	122.6845	19			42688	42011	afei Pacheco Junsay 19920	915
1	0/12/2018 17:12	8/12/2016	9:34 6/	12/2018 9:38	1.582+14			7.679634	122,5105	178			42354	42660	Reymond Tribunalo Do Astr	12994
4	4/18/2036 18:18	4/29/2018	8:45 47	18/2016 6:54	1.586+14			13.84873	131.5/66	56	18	17100	42679	43485	Martela Guilao Ragos 1954	11.11
5	8/15/2018 12:08			1/2018 11:22				8.142343	123-4166	127	.5	- C. Marana	42587	42589	Raymond Tribunalo De Ast	
•	5/18/2018 14:32	5/18/2018 1	2.44 5/1	2018 11:01	3.566+14			16.45114	131.0965	499	- 4	989080		42511	sultus Galleon Casil 38(857	
7	7/15/2018 16:25			1/2018 12:28					123-4189	381	. 5		425/0	42005	None Militante Sebellano 1	56004
8	\$/3/2016 16:01	3/97/2016		13/2016 8:05	1.566+14				138.3768	45		9999999		62511	Rich hardon Manpard 19708	
۲	6/56/2008 13:22			0/2018 15:02				6.977487		. 95	. 5		42402	43048	Artune Pradu Crisamacton I	
0	5/18/2010 13:38	\$/29/2816		18/2010 9:54	1.555+14			10.78114	132.4703			9999999		42601	Pace Santas Manguno 19700	507
TT.	8/27/2856 8:40			4/2018 10:01				7.003483	124,5485	937	1.2	15120		43988	Elvie Certero Betores 1984	
I	5/27/2010 18:56	\$/37/2646		6/2010 10:53	1.556+14			17.57138	138.3712	:00		999999	AMAT	42536	134525	
1	8/23/2009 18:41			14/2000 6157				14.85225	120.497	. 11		1025	42395	42982	Emilio Malifi Purio 1391(42)	
4	9/15/2030 13:08			9/3016 11:49				8.123045	103,8154	. н	- 5	8000	100 million	42599	- Jurita Astrona Sumagang S	
4	5/15/2019 10:02			15/2008 9:38				10.79129	122,4708	88		787575		42538	Non Sankus Manques 19708	
16	7/26/2018 13:02			1/2018 12:46					122.4092	135	- 4		42535	43687	Reymond Tribunale De Ast	
2	7/26/2009 13:02			Passe Exce				5 Y Y Y Y Y Y Y Y	122,5483	364			425.95	42948	Kayroond Tribunalo De Asi	
F	0/20/2018 28:56			0/2014 12:40					122.6734	- 18		8013		42601	efel Pachaso Junuary 2020	
	8/27/2010 6-41			1/2014 11/10					134,3617	5.92			42947	429/17	Whenvelo (ay sarroga tourais)	
10	7/26/2016 13:12	7/25/20351		1/2018 16:52					112.5544	208	.5		42536	42638	Reymond Dribunalo De Aal	
	8/13/2010 17:12		the second second	1/2014 11-12				10000000	122-4891	182			42195	63683	Raymond Inibunate Dr Ast	
tê.	7/26/2038 13:52	1/25/2616		25/2016 8:45					132.5465	130	5		425/95	42080	Raymond Tribonalo Da Ast	
а.	7/26/2016 13:12	7/25/2018 1		120111111					112,3388	110			42536	42662	Raymond Tribunato De Asi	
ш,	B Date		(4)	a design a designer				100.000	100.000	-		f l	-	10000	Contraction in public 1 and 100000	-
	1,040	Configuration of the local distribution of t	e.										COLME 14			

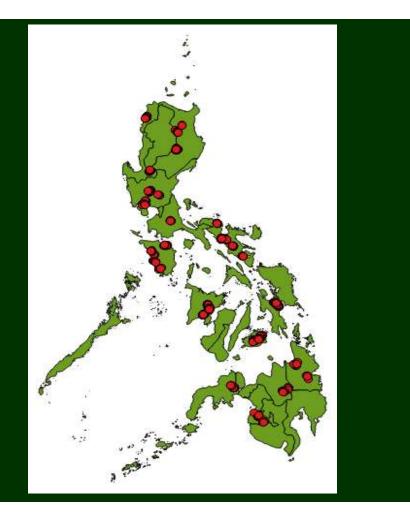
• Data were analysed using the formula:

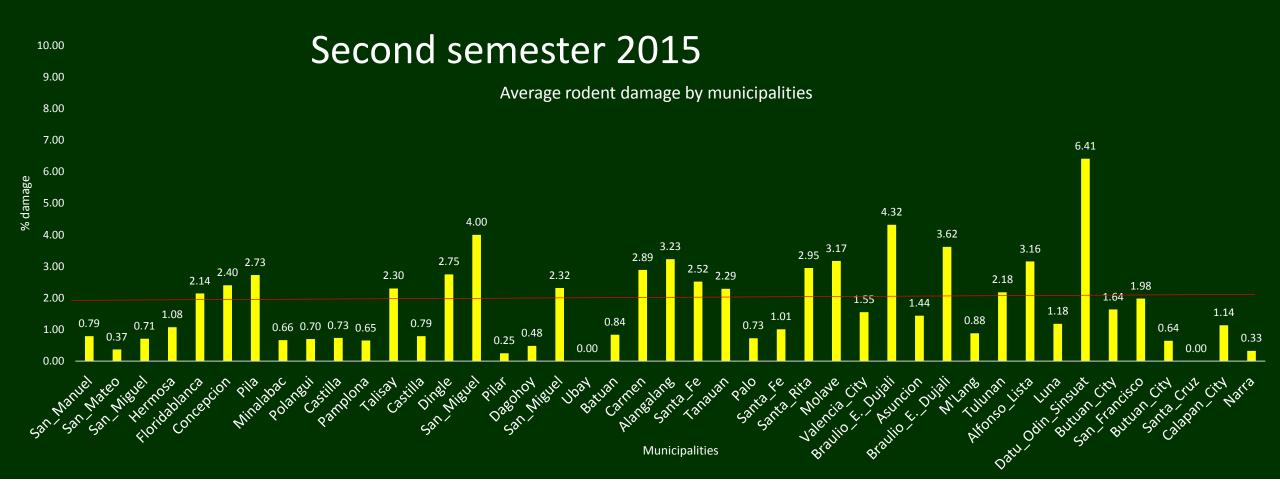
% damage =


damaged tillers total number of tillers x 100

Second semester 2015

- **576** fields in 24 provinces were surveyed
- 2.11% was the average national rodent damage
- **0.00 to 35.67%** range of rodent damage
- **62.08%** chance of rodent damage incidence


Second semester 2015 10.00 9.00 Average rodent damage by municipalities 8.00 7.42 6.95 7.00 6.12 6.00 5.59 % damage 5.38 5.00 4.57 4.12 4.05 3.82 3.83 3.61 4.00 3.10 3.00 2.44 2.31 1.98 1.95 2.03 1.60 2.00 1.56 1.20 1.08 0.88 1.15 1.00 1.01 0.84 1.00 0.53 0.55 0.54 0.47 0.46 0.52 0.34 0.16 0.00 0.28 0.21 0.16 0.01 0.00 0.00 Plona bac neui suila isav Datu_Odin_insuat Valencia City cabanelasan SanFrancisco Miguel Barse, CHA San Mateo conception Daephoy Batuan carmen artare Molave BUTUANCIN 5an Manuel Jordabanca can Miesel Pampiona onele meuel city pilat Ubay langalane Palo ranauan Nahayas Rila Sablavan Santa Cut Calapan (114) Hernosa Pilla IBUIB Municipalities


first semester 2016

- **548** fields in 24 provinces were surveyed
- **1.96%** was the average national rodent damage
- 0.00 to 22.28% range of rodent damage
- **35.03%** chance of rodent damage incidence

For more information:

CDPRiSM

END

http://philippinericeinfo.ph

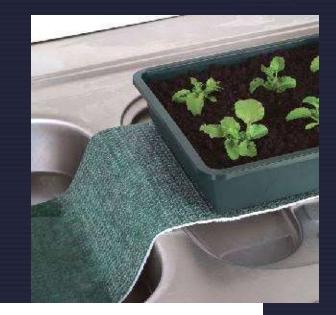
Development of Capillary Irrigation (*Capillarigation*) System for Rice-based Crops

Maximizing the Use of Water by Small-holder Farmers During Extreme Drought Conditions

> Ricardo F. Orge & Derose A. Sawey PhilRice -CES

> > 29th National Rice R&D Conference September 7-8, 2016 PhilRice, Maligaya, Munoz SC, Nueva Ecija

CLEAN GREEN PRACTICAL SMART


How water is applied to plants needs to be seriously considered especially now that water is becoming scarce

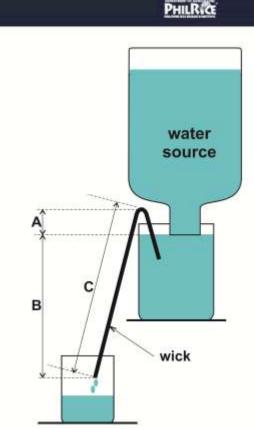
- Extreme event like El Niño comes every 2 to 7 years
- The Philippines, together with other Southeast Asian Countries, will experience a "high" degree of water shortage in the year 2040 (World Resources Institute)
- There is an increasing need for efficient and affordable method of irrigating crops


Use of capillary wicks

Proven to efficiently work on nurseries, labor-efficient and can substantially reduce water usage (Nalliah, & Sri Ranjan, 2010)

No advancements done yet for field crop production (Million et al., 2007)

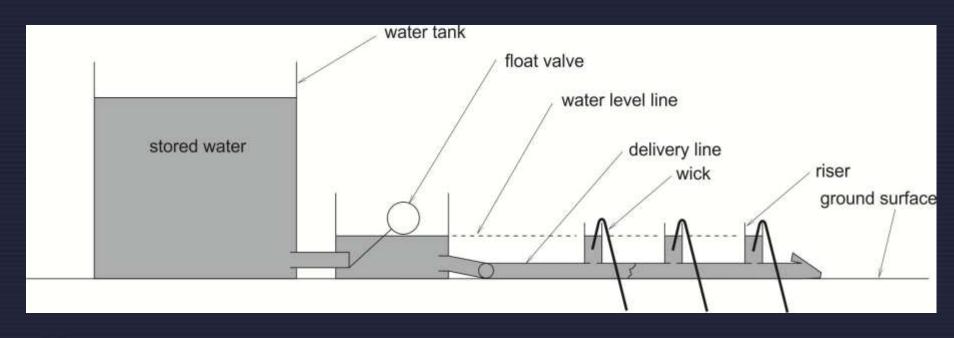
Wick Watering African Violets



To develop a low cost irrigation system for rice-based crops making use of capillary wicks as media for dispensing water to plants **Development criteria Target users:** - small-holder rice-based farmers **Target outcomes:** - low cost technology ✓ Local, low cost/recycled materials - capacity enhancement of farmers \checkmark Low skill fabrication, operation, & maintenance **Benchmark: drip irrigation system** - capillary wicks instead of drippers

Materials & Methods

Activities 1. Establishment of design data a. Suitable wick material b. Factors affecting wicking flow rate 2. Design of system components 3. Field Performance test



System's basic components

Flow rate of the wicks (cotton yarn) under actual field conditions

Wick		Avera	ige WFR, r	nL h ⁻¹	
location	Day 1	Day 7	Day 14	Day 21	Mean
Upstream	16.7	53.7	38.0	40.7	37.2a
Tail end	26.3	47.7	44.0	40.3	39.6a
Mean	21.5b	50.7a	41.0 a	41.5 a	

Capillarigation field setup

Plastic pipe

Cotton yarn (with drinking straw cover)

Capillarigation as compared to drip irrigation system

PARAMETER	CAPILLARIGATION	DRIP
Emitter discharge (mL h ⁻¹)	30-50	800 - 3000
Operating pressure (cm water)	10-15	>100
Water filtration system	Highly needed	Not so important
Sub-surface application	yes	no
Application	continuous	intermittent

Yield, weed density, and water use efficiency as affected by two irrigation methods

Doutoumonco	Tria	1	Trial 2			
Performance Parameter	(Green P	epper)	(Tomato)			
Parameter	Capillarigation	Control	Capillarigation	Control		
Yield per Plant, g	51.7	63.1	399.0	306.0		
Weed density, g m ⁻²	47.2	111.7				
Water use efficiency, g L ⁻¹	1.8	1.2	5.5	2.5		

PHILRICE

Challenges

Prospects

Vertical farming

Use of capillary wicks as replacement for dripper (following a drip irrigation setup) is technically feasible

PHILR

Initial results of field trials show that the *capillarigation* system works for the rice-based crops tested.

More field tests need to be done in wider areas to verify the results and test its suitability under various field and crop conditions

Pathogenicity Analysis of Philippine Isolates of Rice Blast Fungus (*Pyricularia oryzae* Cavara) Using the International Blast Designation System

JT Niones¹, JP Rillon¹, LM Perez¹, MER Fabreag² and Y Fukuta³

¹PhilRice Central Experiment Station, Maligaya, Science City of Munoz, Nueva Ecija, Philippines

² Syngenta Philippines

³Japan International Research Center for Agricultural Sciences ,1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686 Japan

Rice Blast

Leaf Blast

- ➤ Seedling to tillering stage
- Diamond-shaped lesions with gray or white center
- Leaf blast can kill young plants

NSIC Rc216 infected with leaf blast (seedbed) Cuyapo, Nueva Ecija. WS2016.

Photos credit to the PRISM project

NSIC Rc298 infected with leaf blast (transplanted), Babatnon, Leyte. WS2016 Photo credit to UGDuque

Node Blast

Node of the stem turns blackish and breaks easily

Photos credit to the PRISM project

Collar Blast

- Infection at the intersection of leaf blade and sheath results in " collar rot"
- Entire leaf blade dries up when the base of the flag leaf is infected

Neck/panicle Blast

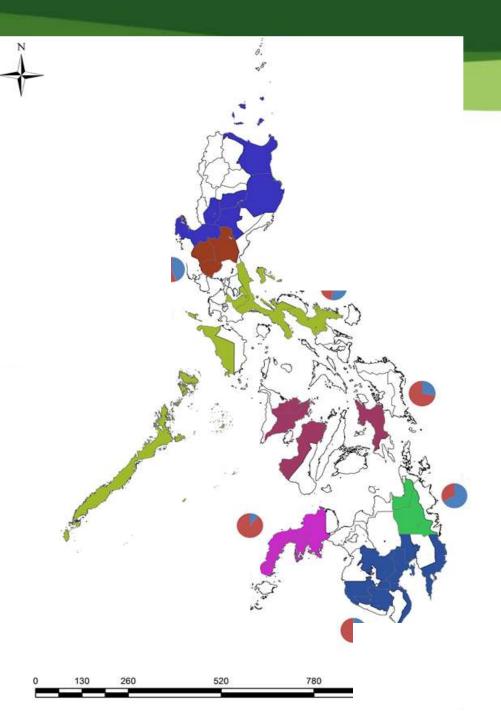
- Caused incomplete grain filling and poor milling quality
- Early occurrence of neck rot causes premature death of entire panicle, leaving it white and destroyed.

Varieties that succumb to rice blast disease

Variety name	Date approved as variety	Blast resistance reaction *	Year reported**
NSIC Rc222	2009	intermediate	WS 2016
NSIC Rc122	2003	resistant	2005
NSIC Rc112	2002	Intermediate	2005
PSB Rc82	2000	resistant	2002
PSB Rc14	1992	intermediate	2005
IR64	1985	resistant	2003

Blast field resistance reaction when released as variety
 ** Report of susceptible blast reaction

- Breakdown of resistance only few years after varietal release.
- Occurrence or dominance of new pathogenic races


Materials and Method

213 rice blast isolates

Luzon: 7 regions, 14 provinces N: 141 IL: 94 Rainfed: 14 Cool-elevated: 28 Upland: 5

Visayas: 2 regions, 4 provinces N: 11 IL: 3 Rainfed: 8 Cool-elevated: 0 Upland: 0

Mindanao: 4 regions, 11 provinces N= 61 IL: 56 Rainfed: 3 Cool-elevated: 0 Upland: 2

Differential rice varieties

25 LTH monogenic lines23 Target resistance genes

Susceptible control: LTH, US-2

Monogen ic lines (IRBL)	sh-S b-B T-K59	LTH a-A -	i-F5 3-CP4 5-M	ks-S - -		k-Ka kp-K60 7-M	9-W - -	z-Fu z5-CA zt-T	ta2-Pi ta2-Re 12-M	ta-K1 ta-CP1 -	19-A 20-IR24 -
Resistan-	Pish	+	Pii	Pik-s	Pik-m	Pik	Pi9(t)	Piz	Pita-2	Pita	Pi19
ce gene	Pib	Pia	Pi3	-	Pi1	Pik-p	-	Piz-5	Pita-2	Pita	Pi20(t)
	Pit	-	Pi5(t)	-	Pik-h	Pi7(t)	-	Piz-t	Pi12(t)	-	-

New designation system for blast races based on the reaction of monogenic line with LTH background (Hayashi and Fukuta, 2009)

			Chr.9		Chr.11		Ch	nr.6		Chr.12	
Group	I II					ľ	V		V		
Locus	-	-	Pii		Pik		P	Piz		Pita	
Target	Pish	+	Pii	Pik-s	Pik-m	Pik	Pi9(t)	Piz	Pita-2	Pita	Pi19
resistance	Pib	Pia	Pi3	-	Pi1	Pik-p	-	Piz-5	Pita-2	Pita	Pi20(t)
gene	Pit	-	Pi5(t)	-	Pik-h	Pi7(t)	-	Piz-t	Pi12(t)	-	-
Monogenic	sh-S	LTH	i-F5	ks-S	km-Ts	k-Ka	9-W	z-Fu	ta2-Pi	ta-K1	19-A
lines	b-B	a-A	3-CP4	-	1-CL	kp-K60	-	z5-CA	ta2-Re	ta-CP1	20-IR24
(IRBL)	T-K59	-	5-M	-	Kh-K3	7-M	-	zt-T	12-M	-	-
Code	1	1	1	1	1	1	1	1	1	1	1
	2	2	2	-	2	2	-	2	2	2	2
	4	-	4	-	4	4	-	4	4	-	-
Ex. Blast	S	S	S	S	S	S	S	S	S	S	S
isolates	S	S	S	-	S	S	-	S	S	S	S
virulent to	S	-	S	-	S	S	-	S	S	-	-
all genes	7	3	7	1	7	7	1	7	7	3	3

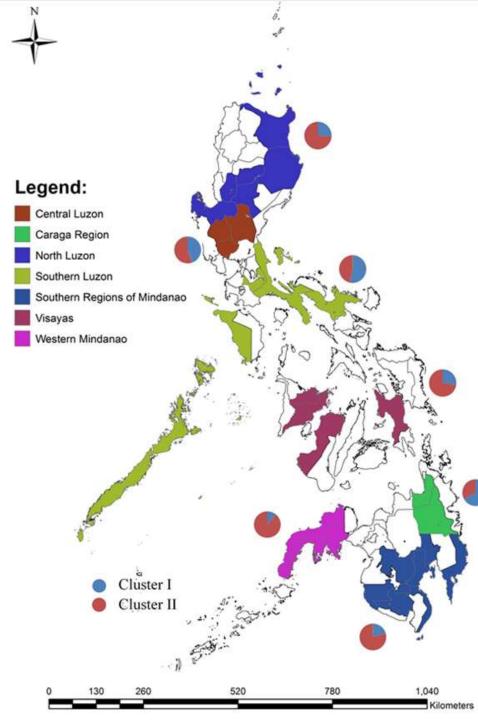
Race number virulent to ALL differential varieties: U73-i7-k177-z17-ta733

			Chr.9	Chr.11			Ch	nr.6		Chr.12	
Group			II		III		IV			V	
Locus	-	-	Pii		Pik		Р	iz		Pita	
Target resistance gene	Pish Pib Pit	+ Pia -	Pii Pi3 Pi5(t)	Pik-s - -	Pik-m Pi1 Pik-h	Pik Pik-p Pi7(t)	Pi9(t) - -	Piz Piz-5 Piz-t	Pita-2 Pita-2 Pi12(t)	Pita Pita -	Pi19 Pi20(t) -
Monogenic lines (IRBL)	sh-S b-B T-K59	LTH a-A -	i-F5 3-CP4 5-M	ks-S - -	km-Ts 1-CL Kh-K3	k-Ka kp-K60 7-M	9-W - -	z-Fu z5-CA zt-T	ta2-Pi ta2-Re 12-M	ta-K1 ta-CP1 -	19-A 20-IR24 -
Code	1 2 4	1 2 -	1 2 4	1 - -	1 2 4	1 2 4	1 - -	1 2 4	1 2 4	1 2 -	1 2 -
Ex. Blast isolates virulent to all genes	S S S	S S -	S S S	S - -	S S S	S S S	S - -	S S S	S S S	S S -	S S -
5 901100	7	3	7	1	7	7	1	7	7	3	3

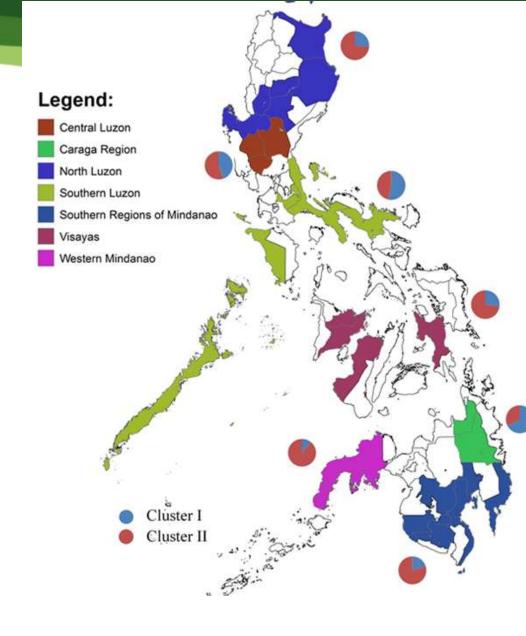
Race number avirulent to ALL differential varieties: U00-i0-k000-z00-ta000

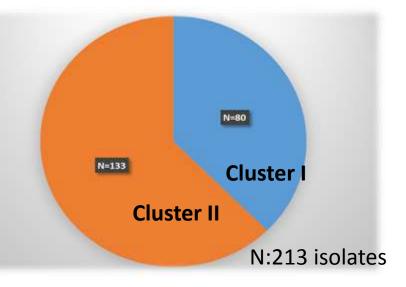
Blast races in the Philippines based on new international blast designation system

Designation	No. of blast isolates	(%)	
U63-i0-k175-z00-ta700	13	6	
U63-i0-k100-z04-ta431	7	3	
U63-i0-k100-z04-ta421	4	2	
U00-i0-k000-z00-ta000	3	1	
U01-i0-k100-z00-ta401	3	1	
U21-i0-k175-z00-ta500	3	1	
U23-i0-k175-z00-ta702	3	1	
U23-i0-k175-z10-ta700	3	1	
U20-i0-k100-z00-ta400	2	1	
U23-i0-k135-z00-ta500	2	1	
U63-i0-k100-z04-ta401	2	1	
U63-i0-k100-z05-ta431	2	1	
Other pathotypes			
(with only one isolate each)	163	-	_
TOTAL isolates	213	-	


213 isolates are categorized into 175 races

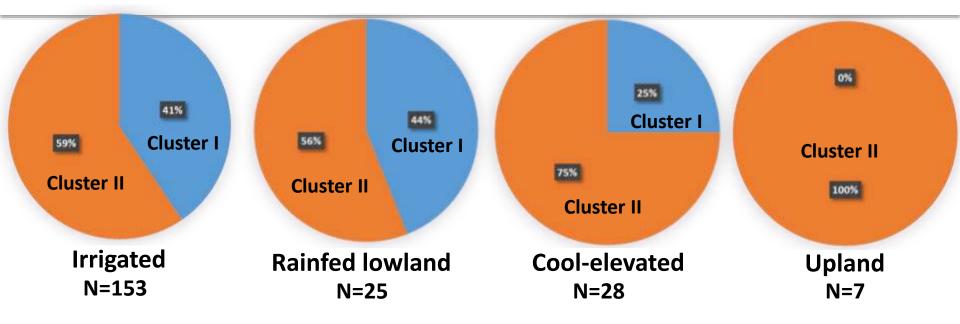
Distribution (Cluster I and II) of rice blast isolates


- South and Central Luzon: same number of isolates belonging to Cluster I and II
- Northern Luzon: mainly belonged to Cluster II


□ Visayas: mainly belonged to Cluster II

Western and Southern Mindanao: mainly categorized into Cluster II

Caraga region : mainly belonged to Cluster I



DEPARTMENT OF AGRICULTURE PHILIPPINE DEL NESEARCH REDITIVE CLEAN | GREEN | PRACTICAL | SMART

Number of blast isolates categorized as Cluster I or Cluster II.

Distributions of blast isolates classified into pathogenicity group in each ecosystem

Isolates belonging to Cluster I and II were distributed in irrigated and rainfed lowland

□ Majority of isolates from Cool-elevated areas belonged to Cluster II.

□ All of the isolates from Upland belonged to Cluster II

Dominant Pathogenic races common in both Cluster I and II

Reaction type	Virulent to	Avirulent to
U63	Pib, Pit, Pia	Pish
U23	Pib, Pia	Pish, Pit
iO	-	Pii, Pi3, Pi5(t)
z00	_	Pi9(t) Piz Piz-5 Piz-t

- Isolates that are virulent to Pib, Pit, Pia genes can be found in both Cluster I and II
- Isolates that are avirulent to *Pish, Pit,Pii, Pi3, Pi5, Pi9, Piz, Piz-5* and *Piz-t* genes are present in Cluster I and II

Pathogenic races that differentiates between Cluster I and II

Reaction type	Virulent to	Avirulent to	Remarks
k175	Pik-s, Pik-m Pi1, Pik-h Pik, Pi7	Pik-p	only in Cluster I
ta 700	Pita-2 , Pi12	Pita , Pi19 , Pi20	mainly in Cluster I
k100	Pik-s	Pik-m , Pik , Pi1 Pik-p , Pik-h , Pi7 (t)	only in Cluster II
ta431	Pi12, Pita , Pi19	Pita-2, Pi20	mainly in Cluster II

Isolates avirulent to Pik-m, Pik, Pi1, Pik-h and Pi7 and Pita-2 genes and virulent to Pita and Pi19 genes can only be found in Cluster II

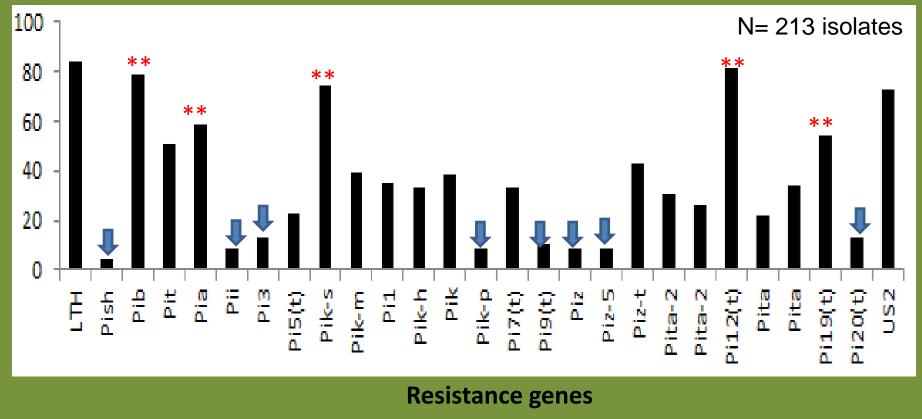
Isolates virulent to Pik-m, Pik, Pi1, Pik-h and Pi7 and Pita-2 and avirulent to Pita and Pi20 can only be found in Cluster I

Summary and Conclusion

Pib, Pit and Pia genes are not effective against Philippine blast isolates

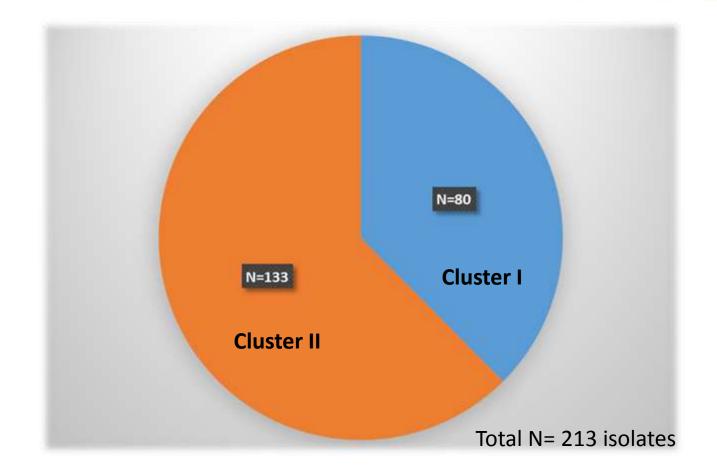
- Pish, Pit, Pii, Pi3, Pi5, Pi9, Piz, Piz-5 and Piz-t are effective genes against Philippine blast isolates
- ***** Broad-spectrum resistance genes**

Differentiation of Philippine blast isolates


- Blast isolates in Cluster I and Cluster II differentiated on their reactions to DVs carrying genes in the *Pik* and *Pita* chromosome regions
- In areas where isolates mainly characterized as Cluster I: Pik-m, Pik, Pi1, Pik-h, Pi7 and Pita-2 genes are not effective; on the other hand Pita and Pi20 are effective genes
- In areas where isolates mainly characterized as Cluster II: Pita and Pi19 genes are not effective; while Pik-m, Pik, Pi1, Pik-h, Pi7 and Pita-2 are effective genes

End of presentation

Frequency of virulent blast isolates against blast resistance genes


☐ High frequencies (>60%) of occurrences of blast isolates virulent to DVs harboring *Pib, Pia, Pik-s, Pi12(t), and Pi19*.

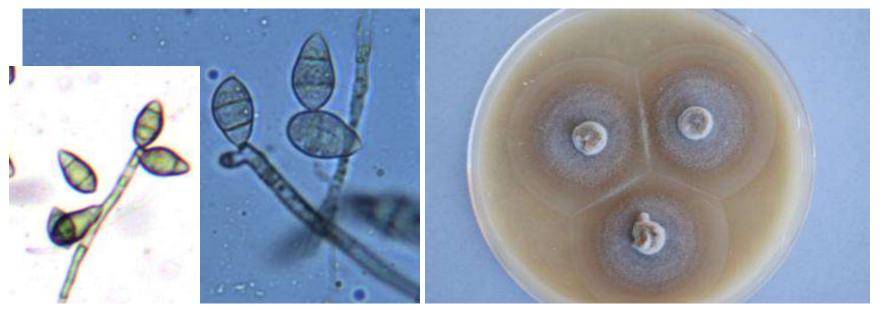
Low frequencies (<20%) of blast isolates virulent to Pish, Pii, Pi3, Pik-p, Pi9(t), Piz, Piz-5 and Pi20(t).

Variety name	Date approved as variety	Blast resistance reaction *	Year reported /areas affected
NSIC Rc216	2009	susceptible	2016,WS (Cuyapo, N. Ecija
NSIC Rc222	2009	intermediate	2016,WS (Munoz, N. Ecija
NSIC Rc298	2012	susceptible	2014, 2016,WS (Carmen, Bohol; Babatnon, Leyte
NSIC Rc128	2004	susceptible	2010 (Sta. Rosa, N. Ecija)
NSIC Rc122	2003	resistant	2005 (areas in Mindanao)
NSIC Rc112	2002	intermediate	2005 (in most parts of Visayas- Iloilo,Bohol, Aklan and Capiz)
PSB Rc82	2000	resistant	2005
PSB Rc14	1992	intermediate	2005
IR64		resistant	2005 (Lasam, Cagayan

Number of blast isolates categorized as Cluster I or Cluster II.

Concept of host plant resistance

" Gene- for gene" theory


every resistance gene (R gene) in the host corresponds to an avirulence gene (Avr gene) in the pathogen

Plant (rice cultivar)	Pathogen (isolate)	Disease reaction
resistant	avirulent	Incompatible (-)
susceptible	virulent	compatible (+)

Rice blast causal organism

- Perfect stage: Magnaporthe oryzae
- Imperfect stage (anamorph): Pyricularia oryzae

fungal spores

Mycelial colony growth in PDA

Effects of Water Management and Fertilizer N Levels on Rice Yield and Incidence of Pests and Diseases in Rainfed Rice Ecosystem

Anielyn Y. Alibuyog, Sonia V. Pojas, Eleanor S. Avellanoza, and Septie Val P. Aquino

29th National Rice R&D Conference

Introduction

- Water stress is considered to be the main factor contributing to the decline of yield
- Looming water crisis, challenging sustainability in rice production system, necessitates the development of suitable crop management
- Amount and timing of rainfall is the main constraint to rice productivity, followed by low soil fertility
- Small nutrient reserves in soils are exacerbated by the effects of a changing water regime on nutrient forms and their availability in the soil

Area planted (ha) and volume of production (t) in WS2015 in Region I

Ecosystem/ Province	Area Planted (ha)	Volume of Production (t)	Yield (t/ha)
	<u>Ra</u>	infed	
llocos Norte	11,220	45,692	4.07
Ilocos Sur	20,197	83,555	4.14
La Union	14,262	60,664	4.25
Pangasinan	80,839	294,794	3.65
Total	126,518	484,705	3.83
	<u>Irri</u>	gated	
llocos Norte	40,975	200,176	4.89
Ilocos Sur	22,630	103,137	4.56
La Union	16,115	76,676	4.76
Pangasinan	103,820	443,619	4.27
Total	183,540	823,608	4.49

Source: PSA, 2016

Related Literature

Author (Year Published)	Findings
Ghosh et al. (2012)	Aerobic rice grown in water stress experienced 9.2 to 24.2 % yield penalty.
	21% increase in root biomass in irrigated crop which resulted in increased nutrient uptake and greater N use efficiency
Upadhyaya et al. (2007)	Crops growing with water stress form reactive oxygen species (ROS) within roots that threatens plants normal function
Cheng et al. (2006)	Formation of ROS, concentration of major biochemical compounds hydrogen peroxides, total soluble protein (TSP), and proline in roots were greatly affected by water stress resulting in reduced grain yield

Related Literature

Author (Year Publishe	ed) Findings
Doberman et al. (1998)	Nitrogen supply commonly limits grain yield in irrigated rice systems. The demand of the rice plant for other macronutrients mainly depends on the N supply.
Pramanick et al. (1995)	high rates of nitrogen fertilizers favors the incidence of many pests such as green leafhoppers, yellow stemborer, leaf folder and ear head bug
Subbaih and Mora (1974)	ichan high level of nitrogen increases leaf folder infestation
Raju et al. (1996)	Potassium at enhanced doses induced resistance to rice leafhopper

Objectives

- To determine the effect of water management and fertilizer N levels on the yield, nitrogen-use efficiency and incidence of pests and diseases of PSB Rc82 in rainfed ecosystem
- To find any associations of water management and N levels on yield, nitrogen-use efficiency, pest incidences and injuries
- To identify the optimum water management and N level for rainfed areas in llocos Norte

Location: PhilRice Batac (2014 WS) MMSU-CRL (2015 WS)

Treatments:

Water Management (3 treatments) Fertilizer N Levels (6 treatments)

Experimental Design: Variety: Seedling Establishment: Days of seedlings: No. of seedlings/hill: Plot dimension: Strip Plot, 3 replications PSB Rc82 Wetbed method 21-25 day old 2-3 3m x 5m

Water Management (Vertical Factor)

Treatment Code	Description	How it was done
W1	Without supplemental irrigation	Purely dependent on rainfall; application of fertilizer treatments depend only on the availability of rain water
W2	With supplemental irrigation during fertilizer application if needed	Supplemental irrigation was done only when there was no rainfall during the scheduled fertilizer application; topdressing was done at tillering and at booting stage
W3	With supplemental irrigation if rainfall is insufficient during critical stages on the crop	Supplemental irrigation was done as needed; enough soil moisture was maintained

Fertilizer N Rate (Horizontal Factor)

Code	N Fertilizer Level	Total kg NPK/ha Applied	kg N per Application	Time of Application
N1		No	one	
N2	60 kg N/ha;	60-30-30	30	After transplanting
	2x application		30	Tillering
N3	90 kg N /ha;	90-30-30	30	After transplanting
	2x application		60	Tillering
N4	90 kg N /ha;	90-30-30	30	After transplanting
	3x application		30	Tillering
			30	Booting
N5	120 kg N /ha;	120-30-30	40	After transplanting
	3x application		40	Tillering
			40	Booting
N6*	150 kg N/ha;	150-30-30	30	After transplanting
	3x application		60	Tillering
			60	Booting

*Additional treatment in 2015WS

Supplemental Irrigation

Table 1. Schedule of supplemental irrigation for W3treatment plots during the two-year experiment.

	<u>2014 WS</u>	<u>S</u>	2	2015 WS	
Date	DAT	Growth	Date	DAT	Growth
	DAI	Stage	Dale	DAI	Stage
Sep 08	41	PI	Oct 08	47	PI
Sep 30	63	Flowering	Oct 12	50	PI
Oct 05	68	Grain filling	Oct 16	53	Flowering
Oct 10	73	Grain filling	Oct 27	64	Grain filling
_	-	-	Nov 03	71	Grain filling

Data Gathering

Soil Chemical and Physical Properties

Before crop establishment and after harvesting the crop, soil samples were collected for the analysis of

- $\circ \, pH$
- o organic matter (OM)
- o nitrogen (N)
- o phosphorus (P)
- o potassium (K)

Agromet data

- The ff data were gathered from the PAG-ASA weather station at MMSU:
 - Min, max, and average daily temp
 - o Daily rainfall
 - o Wind speed
 - \circ Relative humidity

Water depth monitoring

- ✓ 9 piezometers were installed (1 for each block)
- ✓ 1.5 m long; installed below ground to 125 cm soil depth, with 25 cm top segment protruding above the soil

Soil Moisture

 At critical stages, during drought occurrence, soil MC was determined gravimetrically, by sampling soils at 30 cm below the soil surface

Agronomic and Physiological

- ✓ Plant height
- ✓ No. of tillers/hill
- Days to maturity
- ✓ Yield and yield components
- ✓ Leaf area index (LAI)
- ✓ Harvest Index (HI)
- ✓ Nitrogen-use efficiency (NUE)

Pest Assessment

- ✓ Weeds
- ✓ Leaf injuries damaged by insects and diseases following the Standard Evaluation System (SES) for Rice

CGPS FOR CSR

Statistical Analysis

Statistical Analysis

All agronomic and physiological data measured in the experiment were subjected to analysis of variance (ANOVA) using the STAR software.

The treatment means were compared using Least Significant Difference (LSD) and Honest Significant Difference (HSD).

RESULTS

CGPS FOR CSR

Results

Soil Chemical and Physical Properties

Soil Property	2014 WS	2015 WS
Location	PhilRice Batac	MMSU CRL
Texture	medium	heavy
рН	6.93	7.0
OM content, %	1.26	1.69
N, %	0.063	0.085
P, ppm	9.72	6.54
K, ppm	369.93	418.86

Agro-meteorological Data

Drought stress was more severe at the midreproductive to grain filling stages than at the vegetative phase of the rice plants.

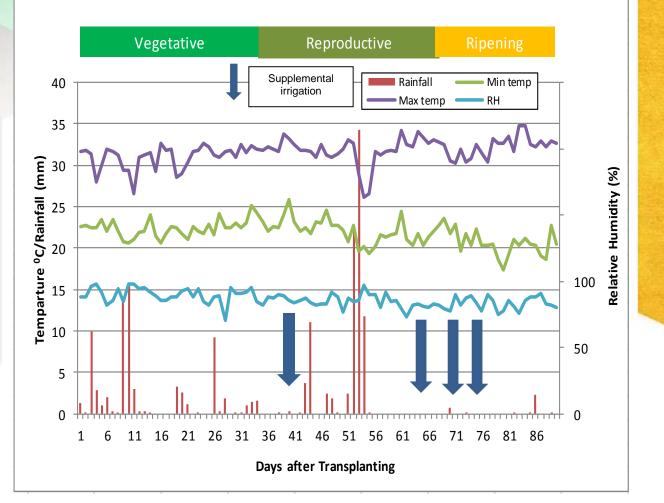


Fig.1. Rainfall distribution (mm), minimum and maximum temperature (°C) and relative humidity (%) during the conduct of the field experiment. July to October 2014.

OFFICE OF

PHILRICE

CGPS FOR CSR

Water Depth, cmbgs

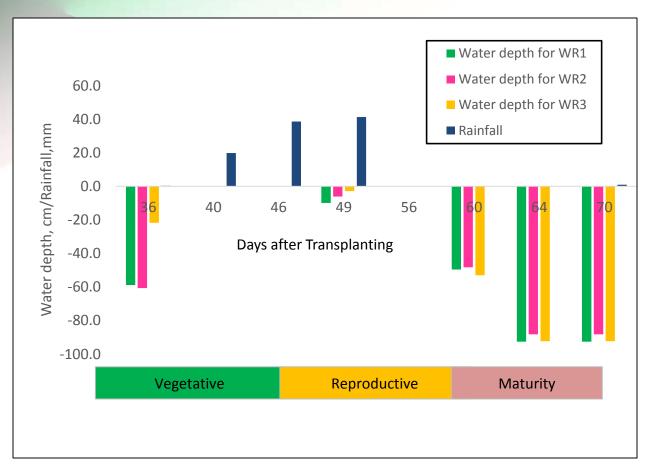


Fig. 2. Rainfall (mm) and water depth (cmbgs) during the conduct of the field experiment. PhilRice Batac. 2014 WS.

Agro-meteorological Data

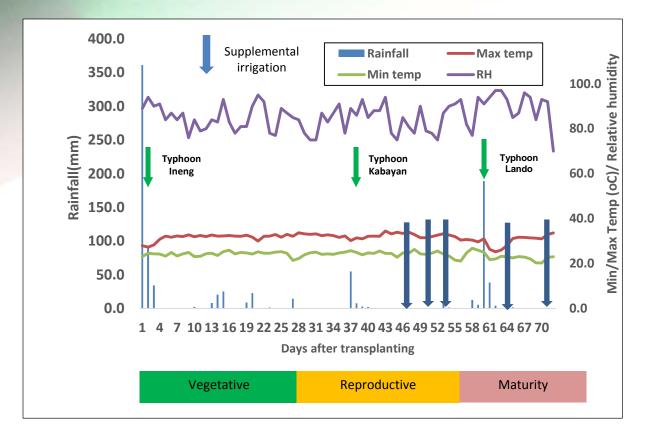


Fig. 3. Rainfall distribution (mm), minimum and maximum temperature (°C) and relative humidity (%) during the conduct of the field experiment. August to October 2015.

PHILRICE

OTTOL CALLS

CGPS FOR CSR

Water Depth, cmbgs

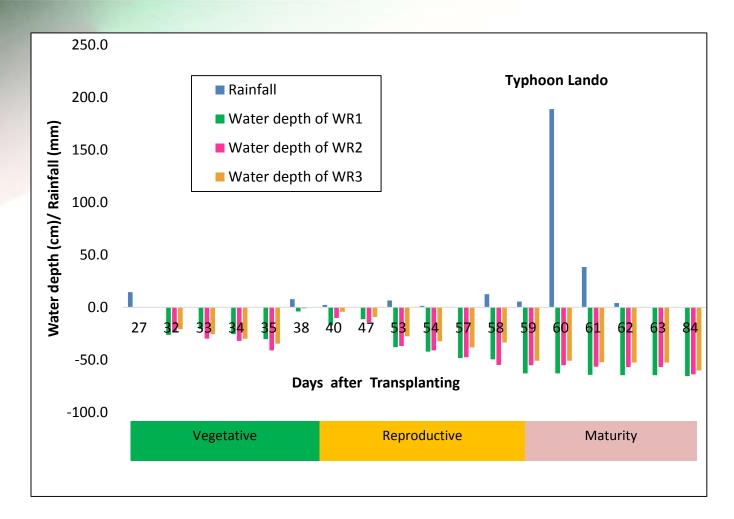


Fig. 4. Rainfall (mm) and water depth (cmbgs) during the conduct of the field experiment. PhilRice Batac. 2015 WS.

CGPS FOR CSR

PHILRICE

OTTOL CALLS

Grain Yield (2014 WS)

Table 2. Yield of PSB Rc82 as affected by water management andnitrogen levels. PhilRice Batac. 2014 WS.

Trootmost	Yie			
Treatment	W1	W2	W3	Mean
N1	886	1,411	1,320	1,206 ^d
N2	1,616	1,664	2,325	1,868 °
N3	1,971	2,235	2,645	2,283 ^b
N4	1,870	1,895	2,902	2,222 ^b
N5	2,405	2,529	3,251	2,728 ª
Mean	1,749	1,947	2,488	2,062
		S	Significance	
	Water Management		ns	
	N Levels **		13.16	
	W x N Levels		ns	14.33

CGPS FOR CSR

Grain Yield (2015 WS)

Table 3. Yield of PSB Rc82 as affected by water management and nitrogenlevels. PhilRice Batac. 2015 WS.

Treatment	Yield (kg/ha)				
Treatment	W1	W2	W3	Mean	
N1	2,311	2,223	3,033	2,522 ^c	
N2	2,918	2,614	3,597	3,043 bc	
N3	3,313	3,192	3,776	3,427 ab	
N4	3,780	3,458	4,794	4,011 ab	
N5	4,893	3,614	4,781	4,429 a	
N6	4,232	3,622	4,274	4,043 ab	
Mean	3,575	3,120	4,043	3,579	
			Significance	CV(%)	
Water Management			ns	14.05	
N Levels			**	10.87	
	W x N Levels		ns	7.08	
*************	********************	***********	**********************		

CGPS FOR CSR

Leaf Area Index

Table 4.Leaf area index of PSB Rc82 as affected by water
management and nitrogen levels. PhilRice Batac. 2014
WS.

Treatment		Leaf	Area Index	
Teatment	W1	W2	W3	Mean
N1	1.82	1.65	1.70	1.72 ^c
N2	2.25	2.18	2.22	2.22 b
N3	2.32	2.17	2.45	2.31 b
N4	2.33	2.58	2.40	2.44 ^b
N5	3.02	3.33	2.84	3.06 a
Mean	2.35	2.38	2.32	
			Significance	CV (%)
	Water Management		ns	13.71
	N Levels		**	14.22
	W x N Levels		ns	12.88

Leaf Area Index

Table 4. Leaf area index of PSB Rc82 as affected by watermanagement and N levels. PhilRice Batac. WS2015.

Treatment		Leaf Area	Index		
freatment	W1	W2	W3	Mean	
N1	1.91	1.71	1.85	1.82	b
N2	2.02 2.22 2.53		2.26	ab	
N3	2.75	2.46	2.44	2.55	а
N4	2.49	2.50	2.56	2.52	а
N5	1.99	2.49	2.65	2.38	ab
N6	2.78	2.72	2.53	2.68	а
Mean	2.32	2.35	2.43		
		Sig	gnificance	CV (%)	
	Water Manageme	ent	ns	15.54	
	N Levels		**	14.35	
	W x N Levels		ns	10.27	
	CGPS FOR CS	R 💮 PHILR			

Harvest Index

Table 6. Harvest Index of PSB Rc82 as affected by watermanagement and N levels. PhilRice Batac. WS2014.

reatment		Harvest Ind	ex			
reatiment	W1	W2	W3	Mean		
N1	0.41	0.46	0.51	0.46		
N2	0.41	0.42	0.47	0.43		
N3	0.42	0.44	0.46	0.44		
N4	0.43	0.43	0.50	0.45		
N5	0.43	0.47	0.47	0.46		
Mean	0.42 b	0.44 ^{ab}	0.48 a			
		Sig	J nificance	CV (%)		
	Water Manag	ement	**	8.89 5.81		
	N Levels		ns			
	WR x N Leve	ls	ns	7.15		
	CG	PS FOR CSR	HILRICE COMMEN			

Nitrogen-use Efficiency

Table 7.Nitrogen-use efficiency of PSB Rc82 as affected by water
management and N levels. PhilRice Batac. WS2014.

Treatment	N	litrogen-use	efficiency		
Treatment	W1	W2	W3	Mean	
N1	-	-	-	-	
N2	12.16	4.21	16.75	11.04ª	
N3	12.06	9.15	14.72	11.98ª	
N4	10.93	5.37	17.58	11.29 ^a	
N5	12.66	9.30	16.09	12.68 ^a	
Mean	9.56 ^b	5.61°	13.03 ^a	9.40	
			Significance	CV (%)	
	Water Manage	ement	**	34.11	
	N Levels	**	36.71		
	W x N Levels		ns	34.78	

Nitrogen-use Efficiency

 Table 8. Nitrogen-use efficiency of PSB Rc82 as affected by water
 management and N levels. PhilRice Batac. WS2015.

-	Nitr	r <mark>oge</mark> n-use E	Efficiency		
Treatment	W1	W2	W3	Mean	
N1	-	-	-	-	
N2	7.63	6.52	11.75	8.63	ab
N3	9.47	10.77	9.83	10.02	ab
N4	14.67	14.67 13.72		16.51	а
N5	20.27	11.59	15.74	15.87	а
N6	11.81	9.32	9.21	10.11	ab
Mean	10.64	8.65	11.28	10.19	
		Się	gnificance	CV (%)	
	Water Mana	gement	ns	56.48	3
	N Levels		**	35.38	3
	W x N Level	S	ns	33.64	4
	CGPS	FOR CSR			

Leaf Area Index

Table 9. Correlation analysis of yield and agronomic and
physiological parameters of PSB Rc82 in two seasons.

Paramotors	<u>20</u>	14	<u>2015</u>			
Parameters	p-value	r ²	p-value	r ²		
Tiller count	0.57	0.640	0.01	0.938		
Panicle length	0.24	0.342	0.07	0.778		
Seed weight	0.21	0.937	0.55	0.313		
Percent filled grains	0.87	0.672	0.75	-0.166		
Plant height	0.04	0.993	0.02	0.936		
Days to maturity	0.01	-0.754	0.52	0.329		
Harvest index	0.02	-0.950	0.14	-0.667		
NUE	0.00	0.898	0.01	0.954		
Leaf area index	0.14	0.954	0.08	0.759		
Brown spot infection	0.76	-0.192	0.07	-0.770		

Weeds

Table 10. Weed incidence as affected by water management and Nlevels. PhilRice Batac. 2014 WS.

Tractmont		Weed In	cidence (g/m²)	
Treatment	W1	W2	W3	Mean
N1	6.00	3.00	5.66	4.89 b
N2	9.33	7.33	1.33	6.00 ab
N3	5.33	0.33	3.00	2.89 b
N4	16.00	8.00	3.33	9.11 a
N5	13.00	0.33	5.33	6.22 ab
Mean	9.93	3.80	3.73	5.82
			Significance	CV (%)
V	later Manag	ement	ns	151.94
Ν	Levels		**	76.76
W	/ x N Levels		ns	67.67

Weeds

Table 11.Weed incidence as affected by water management and N
levels. PhilRice Batac. 2015 WS.

		Water Man	agement			
N Levels —	W1	W2	W3	Mean		
N1	10.41	6.03	7.30	7.91 ^t		
N2	23.56	23.50	19.20	22.09 ³		
N3	8.53	8.71	8.30	8.5 1		
N4	1 3.40		13.40 6.56 9.06		9.06	9.67
N5	16.53	16.90	6.90	13.44		
N6	14.53	14.50	10.93	13.32		
Mean	14.49 ^a	12.70 ^a	10.28 ^b	12.49		
			Significance	CV (%)		
Water I	Vanagement		**	17.76		
N Levels			**	29.64		
W x N Levels			ns	66.11		

Brown Spot

Table 12. Brown spot infection (%) as affected by watermanagement and N levels. PhilRice Batac. 2015 WS.

	Wa	ter Manag	ement	
	W1	W2	W3	Mean
N1	100.00 ^a	96.67 ^a	96.67 ^a	97.78
N2	100.00 ^a	96.67 ^a	96.67 ^a	97.78
N3	96.67 ^a	96.67ª	96.67 ª	96.67
N4	96.67 ^a	93.33 ^a	80.00 ^{ab}	90.00
N5	93.33 ^a	93.33 ^a	83.33 ^{ab}	90.00
N6	86.67 ^a	93.33 ^a	70.00 ^b	83.33
Mean	95.56	95.00	87.22	
		Sig	gnificance	CV (%)
	Water Management		ns	5.88
	N Levels		ns	7.44
	W x N Levels		**	6.10

Conclusion

- Rice yield in rainfed areas may not decline even without supplemental irrigation if the required soil water moisture is attained during the critical periods.
- However, supplemental irrigation at panicle initiation, flowering and early grain filling stage may improve seed weight, harvest index and NUE.
- The application of 120 kg N/ha provides higher yield, more tillers, longer panicles, denser grains, and higher LAI than other rates up to 150 kg N/ha.
- Increasing the general fertilizer recommendation for rice from 90 kg N/ha to 120 kg N/ha provides 23% yield increase.

Conclusion

- In contrast, increasing N level to 150 kg N/ha results in 9.5% decline in yield.
- Application of 90 kg N/ha gives the highest NUE particularly when water is limiting.
- A Other effects of limited water are manifested on pest and disease occurrences, particularly, weed growth and brown spot infection.
- When water is limiting and N fertilizer level is low, plants are less vigorous resulting in higher incidence of diseases and pest damage.

Postharvest Management Key Checks and Best Practices for Improving the Rice Postproduction System

MANUEL JOSE C. REGALADO and PAULINO S. RAMOS Rice Engineering and Mechanization Division Philippine Rice Research Institute (PhilRice)

Introduction

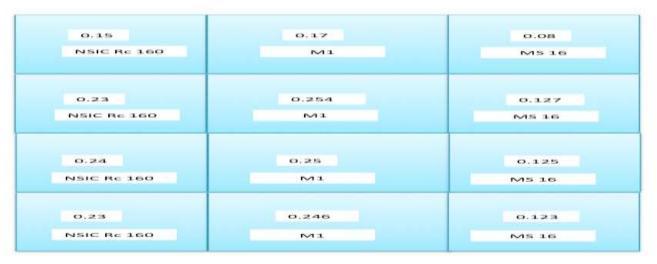
BACKGROUND

- Philippine rice production system improved thru PalayCheck[®] (PhilRice 2007)
- But the postproduction system has to keep pace with this.

PROPOSED SOLUTIONS

- Develop an integrated postharvest management protocol anchored on the PalayCheck[®] system.
- Reduce postharvest losses in the different stages of post-production
- Improve rice trade standards

Objectives


- To develop a system of key checks and best practices for an integrated rice postharvest management covering harvesting to milling.
- To validate the postharvest key checks and best practices thru field and lab experiments, and refine the system.
- To package an improved PalayCheck[®] system enhanced with an appropriate postharvest management protocol.

Methodology

- Development of PalayCheck[®] protocol for rice postharvest management
 - Through multi-sector workshops, identify and select key checks for postharvest operations from harvesting to milling, and recommend best practices
 - Validation of the key checks thru field and lab tests
 - Protocol refinement
 - Further field validation
 - Finalization of protocol

Methodology

Field validation (2014-2015. 4 cropping seasons)

Field experiment lay-out for the 2.2-ha paddy field with 3 cultivars.

Manual rice reaping (left) and collecting and piling (right)

Mechanical rice threshing (left) and combine harvesting (right).

Methodology

• Field validation (2014-2015, 4 cropping seasons)

Storage methods: (1) sack pile of paddy at ambient air condition without pallet (left); (2) sack pile of paddy at ambient air condition with pallet (middle); and (3) sack pile of paddy inside a PhilRice SACLOB (right).

- Rice postharvest management key checks
 - 1. Harvesting and threshing: Cut, piled and threshed palay at the right time
 - 2. Pre-Drying Storage: Palay sorted according to variety type, moisture content, discoloration and damage
 - 3. Drying: Dried palay with good quality
 - 4. Cleaning: Palay with premium purity
 - 5. Storage: Market quality preserved and losses to pests prevented during storage
 - 6. Milling: Maximized milling and head rice recovery
 - 7. Packaging: Milled rice protected from spillage, pest, contamination, and humidity

Best practice(s) to achieve key check

Recommendations to achieve KC 1

✓Reap and thresh within the day or the following day. Use a thresher or combine with the correct machine settings.

Recommendations to achieve KC 2

- Pre-Drying Storage
 ✓ Classify and sort according to variety type, moisture content, discoloration and damage.
 ✓ Stack bags with sufficient space for natural aeration.
- \square Wet grains should be the priority in drying.

Best practice(s) to achieve key check

Recommendations to achieve KC 3

Dry the palay immediately after threshing. If it is not possible, aerate fresh palay by spreading thinly under shade on concrete pavement, tarpaulin, plastic net, or canvas .
 Make sure that the drying area is free from impurities such as pebbles, sand, and other debris. Spread the grain 2-4 cm. thick and stir every 30 minutes.

☑If using a mechanical dryer, dry the palay according to the recommended drying temperature (43°C for flatbed dryer and 60°C for recirculating dryer).

Avoid drying palay on roads to reduce loss, grain breakage, and contamination.

Best practice(s) to achieve key check

Recommendations to achieve KC 4

Clean palay using a blower, fan, or seed cleaner.
 Use appropriate air flow adjustment and grain feeding rate.

Recommendations to achieve KC 5

Storage area should be clean, orderly, free from leaks and holes, and not prone to flooding.
Use pallets and sacks that are free from residual infestation.

To prevent pests, spray insecticides on the walls, floors, and beams of storage area before storing palay.
 Provide adequate space from walls and in-between piles for ventilation, cleaning, and pest control purposes.

Best practice(s) to achieve key check

Recommendations to achieve KC 6

- ☑ Milling machines should be operated by a trained and skilled operator.
- ☑Use machines that can produce at least 65% milling recovery and 80% head rice on milled rice basis.
- Recommendations to achieve KC 7

✓ Use a durable packaging material.
 ✓ Follow the recommended color-coded packaging to indicate quality: blue (special or fancy rice), yellow (premium), white (grade 1-5 with 1 being 90% head rice and 5 being 55%). See PGSP Table 2.

In this study, only key checks 1 and 3 through 6 were validated from 2014 dry season to 2015 wet season. The 2014 and 2015 dry season and wet season grain loss data for the different harvest times and methods across the three varieties are shown in Tables 1 and 2, respectively.

Table 1. Mean grain loss across rice varieties MS-16, Mestizo 1, and NSIC Rc160 harvested at three different harvest times using four different methods (2014 DS and WS, PhilRice CES, Muñoz, Nueva Ecija

	M	ean Grain Lo	ss (% of Field	d Yield) Acro	ss 3 Varieties	S	
Harvest Method	5 Days Earl	ly Harvest	Optimum Ha	nvest Time	5 Days Late Harvest		
	2014 DS	2014 WS	2014 DS	2014 WS	2014 DS	2014 WS	
Cut on 1st day, pile on 2nd day, and thresh on	6.79	7.92	5.82	6.94	17.99	18.56	
Cut and pile on 1st day, and thresh on 2nd day	4.25	5.41	4.21	5.02	10.99	12.42	
Cut, pile, and thresh on 1st day	2.19	3.21	1.04	1.85	6.96	7.97	
Combine Harvesting	1.40	2.03	1.16	1.56	2.76	3.50	

Table 2. Mean grain loss across rice varieties MS-16, Mestizo 1, and NSIC Rc160 harvested at three different harvest times using four different methods (2015 DS and WS, PhilRice CES, Muñoz, Nueva Ecija).

	Me	ean Grain Lo	ss (% of Field	d Yield) Acro	ss 3 Varieties	5	
Harvest Method	5 Days Earl	y Harvest	Optimum Ha	rvest Time	5 Days Late Harvest		
	2015 DS	2015WS	2015 DS	2015WS	2015 DS	2015WS	
Cut on 1st day, pile on 2nd day, and thresh on 3rd day	6.87	8.23	6.14	7.12	18.52	18.96	
Cut and pile on 1st day, and thresh on 2nd day	5.22	5.69	4.43	5.19	11.50	12.70	
Cut, pile, and thresh on 1st day	2.42	3.28	1.16	2.00	7.32	8.21	
Combine Harvesting	1.54	2.09	1.19	1.61	2.90	3.54	

Results showed that the aggregate losses for reaping or cutting, piling and threshing operations across seasons were less than the national average of 5.2% (Francisco 2010) for the three operations when the crop was either cut, piled, and threshed on the same day or combine harvested, both at five days early harvest and optimum harvest times.

However, when harvest time was five days late all harvest methods, except combine harvesting, incurred losses more than the national average.

The 2014 & 2015 DS and WS evaluation results of drying and storage methods for rice varieties MS-16, Mestizo 1, and NSIC Rc160 in terms of germination rate, storage loss, milling recovery and head rice recovery are shown in Tables 3 and 4, respectively.

Table 3. Evaluation of drying and storage methods for rice vareties MS-16, Mestizo 1, and NSIC Rc160 in termsof germination rate, storage loss, milling recovery and head rice recovery (2014 DS & 2014 WS, PhilRice CES,
Munoz,Nueva Ecija)

				D	rying	/Stor	age N	/lethc	od an	d Vari	iety							
	Sun	drying		nbient j t pallet		rage	Sun dr	ying ar		ient file llet	e stora <u>c</u>	ge with			, ,	g and h lob) sto	ermetio prage	5
Evaluation Parameter	MS	MS-16 Mestizo 1 NS		NSIC F	Rc 160	MS	-16	Mes	tizo 1	NSIC I	Rc 160	MS	-16	Mes	tizo 1	NSIC I	Rc 160	
	DS	ws	DS	ws	DS	ws	DS	ws	DS	ws	DS	ws	DS	WS	DS	ws	DS	ws
Germination rate (%) before Storage	100	98	N	.D.	100	99	100	98	N	D.	100	99	100	98	N.D.		100	99
Germination rate (%) after Storage	87.5	85	N	.D.	85.5	86	87.5	82	N	.D.	89	85	97	98	N	.D.	98	98
Storage Loss (%) after 6 months *	9.99(DS)/10.85(WS)					8.8	89(DS),	′9.60(W	/S)			0.0	00(DS)/	′0.00(V	VS)			
Milling Recovery (%) after 6 months	59.87	61.87	57.87	53.53	56.87	49.54	61.55	62.77	58.73	57.73	60.5	50.67	66.34	64.42	62.31	60.13	67.55	56.27
Head Rice (%) after 6 months	58.99	58.03	55.64	47.53	54.98	41.54	58	59	52.73	51.73	58.9	47.37	62	60.26	59.9	57.26	63.9	51.27

N.D.- Not Determine because Mestizo 1 harvest is not F1 seed: * Aggregate for the three varieties

Table 4. Evaluation of drying and storage methods for rice vareties MS-16, Mestizo 1, and NSIC Rc160 in termsof germination rate, storage loss, milling recovery and head rice recovery (2015 DS & 2015 WS, PhilRice CES,
Munoz,Nueva Ecija)

Drying/Storage Method and Variety																			
Evaluation Parameter	Sun drying and ambient file storage without pallet						Sun drying and ambient file storage with pallet						Flatbed drying and hermetic cocoon(saclob) storage						
	MS-16		Mestizo 1		NSIC Rc 160		MS-16		Mestizo 1		NSIC Rc 160		MS-16		Mestizo 1		NSIC Rc 160		
	DS	WS	DS	WS	DS	WS	DS	WS	DS	WS	DS	WS	DS	WS	DS	WS	DS	WS	
Germination rate (%) before Storage	100	99	N	.D.	99	99	100	99	N.	.D.	99	99	100	99	N.D.		99	99	
Germination rate (%) after Storage	87	83	N.D.		89	85	88	85	N.D.		89	87	98	98	N.D.		98	99	
Storage Loss (%) after 6 months *	9.60(DS)/10.25(WS)							8.50(DS)/8.90(WS)						2.50(DS)/1.15(WS)					
Milling Recovery (%) after 6 months	59.97	60.87	57.97	52.53	56.97	51.34	62.55	62.57	59.73	58.13	61.5	53.4	67.44	64.02	63.41	59.85	67.58	56.57	
Head Rice (%) after 6 months	58.23	58.52	55.12	48.45	43.98	47.5	58.5	59.5	53.6	52.73	58.8	50.3	59.12	61.26	56.55	58.96	60.12	54.27	

N.D.- Not Determine because Mestizo 1 harvest is not F1 seed: * Aggregate for the three varieties

Viability of paddy seeds was preserved well through flatbed drying and hermetic storage in a plastic cocoon (PhilRice SACLOB), with germination rates decreasing only from 100% to 97–98% for MS-16 and from 99–100% to 98% for NSIC RC160 after six months.

Germination rates dropped by 10 percentage points or more after six months with ambient pile storage, with or without plastic pallet, although the viability of the paddy seeds is above the norm set by the Bureau of Plant Industry – National Seed Quality Control Service which is 85%.

Conclusions

We conclude that attaining at least five (1, 3–6) of the seven key checks by following their corresponding best practices will significantly reduce postharvest losses and considerably improve product quality in terms of seed viability and milling recovery.

Recommendations

- 1. The system of seven key checks and their corresponding recommended best practices for an integrated rice postharvest management, covering harvesting, threshing, hauling, cleaning, drying, storing, and milling operations, will have to be pilot tested first in farmers' fields and commercial rice mills for further refinement.
- 2. Thereafter, the improved postharvest management protocol should be used to enhance the existing PalayCheck[®] system and come up with a holistic integrated crop and product management system.

Acknowledgements

We acknowledge the technical support and assistance of:

Dr. Rolando Cruz, who led the development of the PalayCheck System for Irrigated Lowland Rice (production aspect), PhilRice senior consultants, namely: Dr. Silvestre Andales, Dr. Bienvenido Juliano, Dr. Cezar Mamaril, Dr. Tomas Masajo, and the late Dr. Dante de Padua, who is acknowledged as the father of the Philippine grains postharvest industry.

The workshop participants from the PGPC member-agencies, Engr. Ed Alfonso of the San Jose City Rice Millers Association, Ms. Mary Grace Lanuza of PhilRice ODEDR/OED, and several members of farmers' organizations, without whose technical and related inputs, these rice postharvest management key checks and best practices would not have been identified and selected.